Regex Unleashed

In the series of these posts, I take a regular task, and implement it multiple times in an iteratively manner, while also improving performance.

The task is the following, given an input string with placeholders in it, and a map of placeholders to actual values. Replace the placeholders in the input string with the actual text values from the map and return the final string. For example, given input string Hello [%placeholder%]! and map [%placeholder%] => World should return Hello World!. The placeholder's [%placeholder%] part is referred as the key, and World part as the value in this post.

To further clarify the task, these constraints are also true:

  • placeholder keys are delimited with [% at the beginning and %] at the end

  • placeholders are recursive (a placeholder's value may contain another (or the same) placeholder's key, but it should be processed recursively)

  • input text contains no placeholder that are embedded by other placeholders (such as hello [%outer[%inner%]example%])

  • the key of a placeholder contain letters and underscores

  • the same fixed set of placeholders are used on multiple input strings

  • placeholders are used at most once per input text

Find out more


Regex and Faster

In the series of these posts, I take a regular task, and implement it multiple times in an iteratively manner, while also improving performance.

The task is the following, given an input string with placeholders in it, and a map of placeholders to actual values. Replace the placeholders in the input string with the actual text values from the map and return the final string. For example, given input string Hello [%placeholder%]! and map [%placeholder%] => World should return Hello World!. The placeholder's [%placeholder%] part is referred as the key, and World part as the value in this post.

To further clarify the task, these constraints are also true:

  • placeholder keys are delimited with [% at the beginning and %] at the end

  • placeholders are non-recursive (a placeholder's value may contain another (or the same) placeholder's key, but it should not be processed recursively)

  • input text contains no placeholder that are embedded by other placeholders (such as hello [%outer[%inner%]example%])

  • the key of a placeholder contain letters and underscores

  • the same fixed set of placeholders are used on multiple input strings

  • placeholders are used at most once per input text

Find out more


Regex and Speed

In the series of these posts, I take a rather regular task, and implement it multiple times in an iteratively manner, while also improving performance.

The task is the following: given a string input with placeholders in it, and a set of placeholders to actual value mappings. Replace the placeholders in the input string with the actual text values from the map and return the final string. For example, given input string Hello [%placeholder%]! and map [%placeholder%] => World should return Hello World!. The placeholder's [%placeholder%] part is referred as the key, and World part as the value in this post.

To further clarify the task, these constraints are also true:

  • placeholder keys are delimited with [% at the beginning and %] at the end

  • placeholders are non-recursive (a placeholder's value may contain another (or the same) placeholder's key, but this should not be processed recursively)

  • input text contains no placeholder that are embedded by other placeholders (such as hello [%outer[%inner%]example%])

  • the key of placeholders contain letters and underscores

  • the same fixed set of placeholders are used on multiple input strings

  • placeholders are used at most once per input text

Find out more


GC Allocate Array

In this post I will examine the GC Allocate Array methods along with other array creation alternatives.

Previously, I have looked into array allocation with when investigating SkipInitLocal. In that post it turned out the larger the array was, the larger the gain was to use stack allocation with [SkipInitLocal] attribute.

However during exercise I noticed that the current implementation of ArrayPool has been using GC.AllocateUninitializedArray<T> to create the arrays for its internal pool.

Creating Arrays

Find out more